A Flexible Implementation of Matching Pursuit for
Finite Gabor Sequences

S. E. Ferrando, L. A. Kolasa and N. Kovatevi¢

Research partially supported by NSERC

The matching pursuit algorithm of Mallat et. al. is discussed in the context of discretized Gabor
functions on an interval. Results from frame theory are used to introduce corresponding finite dic-
tionaries. We then proceed to describe two software implementations based on these dictionaries.
One implementation allows for users to have great flexibility in the Gabor dictionary to be used.
This is a useful improvement over other implementations which only allow for a fixed dictionary.
The other implementation takes advantage of the FFT algorithm and is faster. These implemen-
tations are written in C++, and can be used in many practical situations given its flexibility and
generality.

Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: Approximations; G.4 [Math-
ematics of Computing]: Mathematical Software; 1.4.5 [Image Processing]: Reconstruction.

General Terms: Algorithms

Additional Key Words and Phrases: Adaptive signal processing. Gabor analysis.

1. INTRODUCTION

In digital signal processing it is often advantageous to analyize a given signal using
an adaptive method (see [Mallat 1998] for example), where the signal is approx-
imated or represented as a superposition of “basic” waveforms which are chosen
from a dictionary of such waveforms so as to best match the signal. The goal is to
obtain expansions which provide good synthesis for applications such as denoising
and super resolution ([Chen et al. 1995]). The dictionary is an overcomplete col-
lection of vectors thereby providing a number of bases from which to choose when
representing a given signal. There are, of course, many measures of what constitutes
a good dictionary relative to a given collection of signals; once one has been chosen
the central problem of adaptive signal analysis is to search for and find the best

Name: S. E. Ferrando

Address: Department of Mathematics, Physics and Computer Science, Ryerson Polytechnic
University, Toronto, Ontario M5B 2K3, Canada.

email: ferrando@acs.ryerson.ca

Name: L. A. Kolasa

Address: Department of Mathematics, Physics and Computer Science, Ryerson Polytechnic
University, Toronto, Ontario M5B 2K3, Canada.

email: lkolasa@acs.ryerson.ca

Name: N. Kovacevi¢

Address: Sunnybrook Health Science Centre, Toronto, Ontario M4N 3M5, Canada.

email: nkovacev@sten.sunnybrook.utoronto.ca

2 . S. E. Ferrando, L. A. Kolasa and N. Kovacevié

or ideal representation of a signal in that dictionary. In general this is a difficult
problem and a number of techniques have been developed [Chen and Donoho 1995],
[Chen et al. 1995], [Coifman and Wickerhauser 1992] and [Mallat and Zhang 1993].
In [Mallat and Zhang 1993] the matching pursuit (MP) algorithm was introduced.
In matching pursuit the single dictionary element which best matches the signal
is removed from the signal, and the search process for the best match is repeated
with the signal residue from the previous step until a stopping rule is satisfied. If
by “best dictionary element” we mean the one with maximum inner product with
the signal, the residue obtained at each step has squared norm as small as possible
for that step. An algorithm that operates in this way with minimal “look ahead” is
known as a greedy algorithm. The greedy MP algorithm is simple, fast, and general
with many interesting applications [Neff and Zakhor 1997], [Jaggi 1998], [Phillips
1998] however, it does not claim any global optimization property. Its generality
is due to the fact that it requires minimal assumptions on the dictionary vectors,
which must only belong to a Hilbert space. Rates of convergence and other math-
ematical questions related to MP are investigated in [DeVore and Temlyakov 1996]
and [Mallat and Zhang 1993].

In general, greedy algorithms offer a tradeoff between global optimization prop-
erties and speed. The fact that the MP algorithm may offer speed advantages over
other adaptive algorithms is very much related to the special dictionary in which
the algorithm is being implemented. For small dictionaries, as for example wavelet
packets ([Mallat 1998]), there are no delicate issues related to the structure of the
dictionary as a data type and the MP algorithm. On the other hand, for larger dic-
tionaries the definition of a sub-dictionary with which to implement the MP search
efficiently becomes an essential question from an implementational point of view.
The goal of this paper and its associated software is to provide two well crafted
implementations of MP with the Gabor dictionary. Currently, there are implemen-
tations of MP on this dictionary (see [Mallat 1998] for information regarding MP
software); our implementation differs essentially from these implementations and
complements them.

We now briefly explain the novelty of our approach in contrast to previous im-
plementations. The Gabor dictionary is built from a gaussian window function g(-)
that is scaled, translated and modulated as follows:

Ks,u,v,w t—u
o) = 222220 (121 cos(ur 4 w),)

where K (5 4 v,0) 18 @ normalizing constant. In a digital implementation of the MP
algorithm decisions must be made as how to treat the continuous variable ¢ and
the continuous parameters s, u, v, w. In [Mallat and Zhang 1993], [Mallat 1998] the
following implementation is considered. A signal f = (f[0], f[1],..., f[N —1]) is
considered as being periodic of period N, where f[i] is the original signal sampled
at time t =1i,i=0,1,... N — 1, and each of the above Gabor dictionary functions
is also sampled at time t = ¢, ¢ = 0,1,...N — 1 and periodized. The parameters
are then discretized as follows. The scale paramter, s is first chosen as a power of
2, then

(5,u,v) = (27, p27 Au, k277 Av), (2)

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 3

where Au =1, Av=m, 0<j <logy(N), 0<p< N2 and 0 <k <271 A
value for the phase parameter, w, is found using complex arithmetic.

The advantage with this particular implementation is that the order of complex-
ity is low—O(N log,(N)). The two main disadvantages with this implementation
are that one typically does not have periodic data, and that one may wish to use
a finer dictionary—i.e., to make a finer partition of the parameters. A third mi-
nor drawback is the introduction of complex arithmetic needed to find the phase
parameter, w. Our approach is not to treat signals as a periodic sequence, nor as
an infinite, compactly supported supported sequence (aperiodic). We assume that
the input signal and dictionary signals are finite in extent and do not exist beyond
the boundaries of an interval. This approach eliminates well known undesirable
boundary effects ([Taswell and McGill 1994]) that are so often present in the other
two mentioned cases. We will also have more freedom in choosing the dictionary
of Gabor functions that we shall use. In particular we may choose scales s = a/,
where a is not necessarily 2. The price to be paid, of course, is that the order of
complexity increases. We have been very careful, however, to write fast executing
code; signals of large size are easily handled; thus for typical signals our version of
MP is applicable.

In [Mallat and Zhang 1993] analytical formulas are developed which allow for a
low complexity algorithm; this depends heavily on the periodicity assumption. We
do not assume periodicity so we must find other devices to speed up our calculations.
One of the main points of our implementation revolves around our optimizations
which make it viable. These are described in Section 4 where we introduce two
alogrithms. The first is a flexible one whereby the user has great leeway in choosing
the dictionary. The second is a fast algorithm which uses practically the same
dictionary as in [Mallat and Zhang 1993] and has complexity O(N(log2(N))?).
Finally, in either case, we show how to optimize away the phase parameter using
basic calculus. Previously this fact seems to have passed unnoticed.

Our algorithms are part of a wavelet software package, Wave++ ([Ferrando et al.
2000]) which has documentation and demos. The remainder of the paper is orga-
nized as follows. Section 2 and subsections describe briefly the MP algorithm for
Gabor dictionaries. In Section 3 we review results from frame theory which are
relevant to the MP algorithm for Gabor dictionaries. Section 4 is the core of the
paper and describes the novelty and technical details of our implementations.

2. THE MP ALGORITHM

In this section we review the essential aspects of the matching pursuit algorithm
as discussed in [Mallat and Zhang 1993]. Let H be a Hilbert space. We define a
dictionary as a family D = {g, : v € I'} of vectors in H such that ||g,|| = 1. Let V
be the closed linear span of the dictionary vectors. We say that the dictionary is
complete if V = H and overcomplete if D is complete and is a linearly dependent
set.

We want to compute a linear expansion of f € H over a set of vectors selected
from D in a way that describes f as simply as possible in terms of vectors from D.
In MP this is done by successive approximations of f by orthogonal projections on

4 . S. E. Ferrando, L. A. Kolasa and N. Kovacevié

elements of D; i.e., given g,, € D the vector f can be written as

f= (fag’Yo>g’Yo + Rf,

where Rf is the residual vector left after approximating f in the direction of g,,.
Clearly g, is orthogonal to Rf, so

I£17 = [{F, g70) 17 + 1RSI

To minimize ||Rf|| we must maximize |(f, g,)| over g,, € D. In general, it is only
computationally feasible to find an “almost optimal” vector g., in the sense that

[{f, 970 = max [(f,g5)| > asup [(f, g5)], (3)
Y a ~yer

where 'y, C T and « is an optimality factor which satisfies 0 < a < 1. The
construction of T',, depends on the dictionary; typically, if the dictionary is indexed
by a set of continuous parameters I', then 'y, will be a discrete grid of some sort in
I'. We call the collection vectors {g, : v € Lo} a sub-dictionary.

We continue the matching pursuit by induction. Let R’f = f. Suppose that we
have computed R™f, the residue of order n, for some n > 0. We then choose an
element g,, € Dy = {g, : v € I's} which closely matches the residue R f:

[(R"f,9y,)| 2 asup [(R"f, g,}].
vyerl

The residue R™f is decomposed as

R"f = (R"f,0v.)97, + R"" f, (4)

which defines R"*! f, the residue of order n + 1. Since R"*! f is orthogonal to g,
IR fII* = [(R" f, 9,017 + [|IR™L £

Let us repeat this decomposition m times. Writing f in terms of the residues R™f,
n=0,1,...,m and applying (4) yields

m—1

=Y (R"f.92.)9y, + R"f.

n=0

The following theorem is fundamental to the MP algorithm [Mallat and Zhang
1993].

THEOREM 1. If D is a complete dictionary and if f € H then

oo

f= Z <ka: Gy >g’Yk

k=0

and

12 =S |(R g0
k=0

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 5

2.1 Gabor Dictionaries

Below we introduce a specific family D ¢ H = L?(R) consisting of Gabor functions,
“windowed” trigonometric functions with infinite exponentially decreasing tails. We
start by introducing continuous Gabor functions, having in mind that for the actual
implementation all functions must be discretized.

As the window function g(t) we use a Gaussian given by

g(t) = 2/1e=m0", (5)

notice that this is a bit different from (8), the reason for this is just to keep some
compatibility with the notation and the discrete dictionary used in [Mallat and
Zhang 1993]. For any v = (s,u,v) € R* x R? =T, let the Gabor function g, be
given by

g4(t) = %g <t — u) et

The factor 1/4/s normalizes g, (t). Here s > 0 is called the scale of the function,
u its translation and v its frequency modulation, g-(t) is centered at the abscissa u
and its energy is mostly concentrated in a neighborhood of u of size proportional
to s. Finite linear expansions of Gabor functions are dense in L?(R), hence this
dictionary is complete.

In order to obtain a decomposition with real expansion coefficients when the
signal f(t) is real, we will use dictionaries of real time-frequency functions. For any
v = (s,u,v) with s > 0 and for any phase w € [0, 2n), define

K . , K _

g('y,w)(t) = %(ezwg(s,u,v) (t)+e_zwg(s,u,—v) (t)) = %g (tTu> COS(Ut-l—U)),
where the positive constant K., is determined by the condition ||g(,,w)ll2 = 1.
The phase w which was hidden in the complex expansion coefficients now appears
explicitly as a parameter of the real Gabor vectors. The dictionary of real time-
frequency vectors is defined by Dr = {g(y,u) : (v,w) € A =T x [0,27)}. For
convenience we use the notation 8 = (7, w). Matching pursuit performed with this
dictionary decomposes any real signal f(t) into the sum

oo

F&) =" (R"f,95.)95.(t)

n=0

where the indices 8, = (sp, Un, Un, wy) are chosen by maximizing [(R™f, ga,)| over
A. In practice this maximization is not feasible and an approximation scheme as
indicated in equation (3) should be used. This is done in the next section by
discretizing the dictionary as suggested by frame theory.

3. FRAME THEORY

In this section we follow [Mallat 1998]. Frame theory can be used to discretize
continuous transforms while retaining a complete and stable representation. For
example, the windowed Fourier transform of f € L2(R) is defined by

Sf(u,f) = <f)gu,£>>

6 . S. E. Ferrando, L. A. Kolasa and N. Kovacevié

with

ue(t) = gt —u)e™".
Setting ||g|| = 1 implies that ||g,¢|| = 1. A discrete windowed Fourier transform
representation

{Sf(un, &) = (f, Gun &)} (1) ez2
is complete and stable if {gu, ¢, } (n,k)cz2 is a frame of L(R), i.e.,

Allfllz < Y0 [(f gune)l® < BlIfll2, (6)

(n,k)€Z?

for every f € LZ(R).
The time and frequency parameters (u, §) are discretized over a rectangular grid
with time and frequency intervals of size ug and &. Let us denote

gn, k() = g(t — nuo) gkeot

The sampling intervals (ug, &) must be adjusted to the time-frequency spread of g.

Window scaling Suppose that {g, i} kez> is a frame of L%(R) with frame
bounds A and B, as in (6). Let us dilate the window g¢4(t) = \/ng(i) It increases
by a factor of s the time width of the Heisenberg box of g and reduces by a factor of
% its frequency width. We thus obtain the same cover of the time-frequency plane
by increasing ug by s and reducing & by L. Let
9s.nk(t) = gs(t — nsup) eih St
It follows that {gs,n,k } (n,k)cz> satisfies the same frame inequalities as {gnk } (n,k)ez2,
with the same frame bounds A and B as can be seen by a change of variable ' = ts
in the inner product integrals.
Necessary conditions Daubechies [Daubechies 1992] proved several necessary
conditions on g, up and & to guarantee that {gn i }(n,r)cz2 is a frame of L2(R).
We summarize the main results:

THEOREM 2 (DAUBECHIES). The windowed Fourier family {gn.k}(nk)cz> is @
frame only if

2T
> 1. 7
up o @
The frame bounds A and B necessarily satisfy
A< _2m < B,
Up §o
o X
VieR , A< t —nug)|? < B,
& n;OJQ(o)l
+0o0
VoeER , A< — —k&))P< B
GER L A Y i ko)

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 7

The ratio %’5’0 measures the density of windowed Fourier atoms in the time-frequency
plane.
Gaussian window The Gaussian window

g(t) = e~ (8)

has a Fourier transform g that is a Gaussian with the same variance. The time and
frequency spreads of this window are identical. It is best to choose equal sampling
intervals in time and frequency: uy = & given that for the same product uyp
other choices would degrade the frame bounds. If g is dilated by s then the time
and frequency sampling intervals must become sug and %0 If the time-frequency
sampling density is above the critical value: %’go > 1, then Daubechies [Daubechies
1990] proves that {gn i } (n,k)ez> is a frame. When up tends to 27, the frame bound
A tends to 0. For uoéy = 2, the family {gn i} (nr)ez> is complete in L?(R),
which means that any f € LZ(R) is entirely characterized by the inner products
{{f,9n.k)}(n.k)ez2- These are the results from frame theory which motivate the
choice of discrete dictionary given in (2), it is easy to check that for this dictionary
condition (7) is satisfied for each scale (notice our use of window (5) instead of (8)).
Obviously other choices for discretizing the scale parameter are also possible. Thus,
frame theory can be used to obtain useful discrete dictionaries to implement MP.

It is important to realize that the multiscale dictionaries obtained above can
in turn be considered as a frame [Zibulski and Zeevi 1995] with this perspective
analysis is performed by means of the frame algorithm. The expansion given by
the frame algorithm actually achieves the singular value decomposition, i.e., solves
a least squares problem for an overcomplete system of linear equations under the
constrain that the sum of the squares of the coefficients is a minimum. This type
of solution does not always produce good compression of the signal and, therefore,
precludes the possibility of useful applications to denoising and super resolution
(sparsity). This fact has been documented in [Chen and Donoho 1995], [Chen et al.
1995] and [Donoho and Huo]. Attempts to remedy this problem can be found in
[Daubechies et al. 1995]. Multi windows (or multi scale) approaches to this problem
are discussed from different points of views in [Janssen 1998] and [Qian and Chen
1996].

This section has assumed continuous-time Gabor functions. Without further
details we move to discrete signals in the next section. Formal treatments of discrete
Gabor schemes can be found in [Zibulski and Zeevi 1994] and [Wexler and Raz 1990).

4. IMPLEMENTING MP WITH DISCRETIZED GABOR DICTIONARIES
4.1 Discrete Gabor Functions on an Interval

We turn now We assume that the input signal f(¢) has been sampled at times
t=0,1,...,N — 1, where N is the number of equally spaced samples. Then

f= (0L fAL;- ., FIN = 1))

is the input vector for the MP algorithm. We do the same for the dictionary elements
in (1) by sampling them on the integers t € {0,1,...,N — 1}. Once a discrete
partition of the parameters (s, u, v, w) is chosen, the MP algorithm takes its setting
in Euclidean space: we are approximating f by elements of an overcomplete basis

8 . S. E. Ferrando, L. A. Kolasa and N. Kovacevié

of RN, where the distance is measured by the standard I norm.

Recall that the dictionary elements must be normalized in the I, sense. The
normalization constants used for continuous Gabor functions in (1) can be dropped
from the formulae since they must be calculated anyway. In other words, we will
say that a real Gabor function g, . w) is defined by

g (£=2) cos(vt + w)
t) = .
o) (®) = 1520 oo)]

As before let v = (s,u,v) and g is given by (5). We define the following functions,

P =g () eoston, @0 =g (S50) sinten

Then we find that
P, cosw — Q,sinw
|Pycosw — Q4 sinwl|’

I(yw) =

and therefore inner products will be given by

_ (i Py)cosw + (f, @y) sinw
<f’g(%w)> - H;“r COS W — QA, si;wH

Recall that at each step of the MP algorithm we seek max- |<R”f, g(%w)>|. The
following proposition explains how to find the optimal w for a given R"f and ~.
As a result, the fourth parameter w is uniquely determined, and the size of the
dictionary depends on partitions in the first three parameters s, u and v only.

PROPOSITION 1. Given f = (f[0],..., f[N—1]) and vy = (s,u,v) denote P = P,,
Q=Q, and

a=(f,P) b= (f, Qa1 = a||QII” = b(P,Q) b =b||P|’ —a(P,Q). (9)

Then an optimal wo, i.e., one for which max,¢[o 2x) |<f, g(%w)>| 18 attained is given

by:
(i) If v = 0, then

a
wo =0, and <f7 g(’y,wo)> = W (10)
(i) If v #0 and ay =0, then
™ b
wo = 57 and <f7 g(’y,wo)> - _M' (11)
(iii) If v # 0 and a1 # 0, then
_ b1 _ aay + bb1
tan wy = T and (f,9(ywo)) = Par + Qb (12)

Proor. If v = 0, then @), = 0 and <f, g(%w)> is independent of w, and so we
choose wg = 0 as in (10). Assuming v # 0, we let z = tan(w). The proof now

reduces to maximazing the function of one variable h(z) = (f, g(%w)>2; we see that

(a — bx)? (a — bx)?

o) = B GalE = TPIE + 1QIF= — 2P, Q)

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 9

Taking derivatives we find

—2(a — bz)
(1P = Q=||)*
When a; = 0, h(z) has no global maximum, except asymptotically at |z| = oo
which is equivalent to choosing wy = 7/2 as in (11). Otherwise, it is clear that

x = —by /a; where h(z) takes its global maximum. Choosing this value for tan(wg)
gives (12)

B (z) = (a1 + by).

O
We present two implementations of MP based on discretized Gabor functions.

—Implementation A, offers flexibility in choosing partitions. It also has the advan-
tage that it works with arbitrary dimensions of the input signal (e.g., N does not
have to be a power of 2).

—Implementation B, which requires that N is a power of 2 and is restricted to the
dictionary given by (2). The algorithm is based on the Fast Fourier Transform
and is faster.

4.2 Data Structures

The algorithms have been written in C++. We find this language convenient be-
cause it allows for the memory management associated with data structures to be
implemented “behind the scenes”, whereby the user treats data structures like na-
tive data types. Otherwise we make little use of the Object Oriented features of
C++.

We use two type definitionss:

—typedef real double;
—typedef integer long;

Naturally, users can change these definitions according to their concerns for memory
usage and precision requirements.

The three data structures, or classes, which we use are Interval, RealGabor
and Partition. We use the class Interval from Wave++ ([Ferrando et al. 2000]).
This class is basically an array designed to represent vectors of real numbers, with
indices being any set of consecutive integers. One typical use of Interval is for s-
toring an input signal f. In our implementations of the MP algorithm, input signals
are indexed from 0 to N —1. This reflects the idea that we can think of an input sig-
nal f as a sample of some function evaluated at times t =0,t =1,...,t =N — 1.
RealGabor is a class which is designed to encode real Gabor functions. Its da-
ta members s, u, v and w have obvious interpretations as scale, center, frequen-
cy and phase. The member function evaluate(real t) returns g, y,uv,w(t) =
g (=) cos(vt + w). The data member Sample of RealGabor contains the sample
values of g(su,v,w)(t) at times t =0, =1,...,t = N —1. When needed, the data
member Sample is set by calling the member function createSample(Interval
I) which first samples g(, y,v,4) Using evaluate on elements of I, and then normal-
izes the sample to unity in the [norm. Partition is explained below.

10 . S. E. Ferrando, L. A. Kolasa and N. Kovatevié

4.3 Implementation A

One main feature of this implementation is the flexibility afforded in choosing the
fineness of the parameter partition. Typically one does not make an arbitrary choice
for the parameters s, u, v, but given the considerations in Section 3, one chooses the
desires scales s[j] first (often s[j] = a), then one chooses the translations u[j] and
the frequencies v[j] with guidance from Theorem 2. Therefore this implementation
can accomodate any partition in s, u, v satisfying the following conditions:

—s can take any desired values, say s[j] for 1 < j < n, provided that 0 < s[1] <
s[2] < ...s[n]. The s[j]’s need not be integers.

—Once we have decided the leftmost and rightmost values of u, denoted 1mu and
rmu respectively, then for any fixed s[j] the partition in « is defined by a constant
increment du = du[j], which depends on s[j] only. More precisely, u € {Imu +
pdu|p € Z,0 < p, lmu+ pdu < rmu}.

—The leftmost value of v is set to be 0 always. Once we have decided on what is
the rightmost value of v, denoted rmv, then for a fixed s[j] the partition in v is
defined by a constant increment dv = dv[j], which depends on s[j] only. More
precisely, v € {kdv |k € Z, 0 <k, kdv < rmv}.

We encode all this information in the class named Partition. Its only construc-
tor Partition(integer N, real a) is designed to create the following partition
suitable for signals of dimension NV:

—s[j] = a, for 1 < j < n, where n is the largest integer power of a such that
a® <N

—dulj] = s[j]/2 and dv[j] = 7/s[j]

—1mu =0, rmu = N — 1 and rmv = 2.

For example, the partition given by (2) is obtained by using this constructor with
a = 2. Users can decide to define a completely different partition as long as it
complies with rules stated above. In this case, though, they would have to set all
data members with a user defined function.

We implement the MP algorithm using two functions: getOptimalGabor and
RunGaborMP. The first one is the core function: given R™f it searches the entire
dictionary for a Gabor function which has a maximal inner product with R™f. The
second function is a wrapper function which runs the MP algorithm by repeated
calls to getOptimalShiftGabor.

The main expenses in terms of the complexity of the MP algorithm are the
number of arithmetic operations performed when calculating inner products and
the number of function calls made. In this implementation we have made great
efforts to reduce the number of function calls, so that in spite of the complexity,
the algorithm executes quickly for N = 2!2, an applicable size.

For illustrative purposes let us look at the level of the inner most loop where we
need to evaluate, for chosen values of s, u and v,

t_
Plsuuwltl =g <_u> cos(vt), where t; =0,1,...,N — 1. (13)
s

The logic of the Partition structure causes the outermost loop of the
getOptimalShiftGabor algorithm to be indexed by the scale variable, s, say s = s;.

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 11

Once s is chosen the increments for u and v, respectively du; and dv;, are fixed.
At this point we must choose which loop is next, and we choose the next loop to
be indexed by the frequency variable, v. This allows us to minimize function calls
in the following way.

We see from (13) that the cosine evaluations are independent of the exponential.
For a fixed of v = vy = kdv; we store the values of cos(vgt;), sin(vgt;) i =
0,1,...,N —1in two arrays '. Clearly, as we progress through the innermost loop
we need not recalculate the sine and cosine values again. But even more savings
may be realized by an updating scheme which makes use of trigonometric identities.
Apparently

cos(vit;) = cos(k dvjt;) = cos((k — 1) dvjt;) cos(dv;t;) — sin((k — 1) dvjt;) sin(dv;it;)
= cos(vi—1t;) cos(dv;t;) — sin(vk_1t;) sin(dv;t;). (14)
Also,
cos(dv;t;) = cos(dvjt;—1) cos(dv;) — sin(dv;t;—1) sin(dv;). (15)

Thus we may update the values in the arrays cos(vit;), sin(vgt;) i =0,1,...,N—1
by using the previously stored values cos(vit;),sin(vit;), applying (14), while the
“Increments” cos(dv;t;), sin(dv;t;) are updated as in (15) following only two initial
function evaluations cos(dv;), sin(dv;).

Before we enter the innermost loop we make use of one last savings device. It
is not necessary to calculate the value of the exponentials for every value of the
translation parameter u. We can simply offset or shift index values by making use
of the following identities:

P cts,0) [t] = P cv) [t — 6] cos(vd) — Q (s,c,0) [t — 0] sin(vd)
Q(S’C+5’U)[t] = P(s,c,v) [t — 5] sin(v&) + Q(S’C’U)[t — 5] COS(U&) (16)

Therefore, for fixed s and v, we need only evaluate one P and (), say P, ., and
Q(s,c,0), Where c is some fixed value (we took ¢ = N/2). Then for arbitrary u, set
the shift, 6 2, by § = u — ¢, and then

<f, P(s,u,v)> = COS(’U(S) Et f[t]P(s’C’v) [t — 5] — sin(v&) Zt f[t]Q(s’cﬁv)[t — 5],
<f: Q(s,u,v)> = Sin(’l)(5) Et f[t]P(s,c,v) [t - 6] + COS(U(S) Zt f[t]Q(s,c,v) [t - 6] (17)

The input parameters of getOptimalShiftGabor are the signal f and the par-
tition Part. Its output parameters are the real Gabor function G and the scalar
coef. On output G receives the optimal Gabor function from the dictionary defined
by Part and coef = (G, f). The algorithm in its most basic outline performs the
search in the following way:

coef =0
for j=1; 7<n; j++

IThe actual implementation stores something else, but the effect is the same. See the code for
getOptimalShiftGabor for the technical details.

2By (16) the §’s must be integers and so we need the du[j]’s to be integers, even though they are
defined as reals in the class Partition. So getOptimalGabor will use integer casting on du[j]’s
(which is essentialy flooring).

12 . S. E. Ferrando, L. A. Kolasa and N. Kovatevié

s = s[j]
for v=0; v <rmv; v+ = dv[j]
update sines and cosines according to (14) and (15)
Calculate P, and Q(s.,y), where c= N/2
for u=1mu; u < rmu; u+ = dufj]
set P = Py, and @ = Q(,,4,0) according to (16)
calculate a, b, a;, by according to (9)
find optimal phase w using Proposition
calculate product = (f, g(s7u7v7w)>
if |product| > coef
set coef = product and G = G(s,u,v,w)
end
end
end

Now let us examine the wrapper function RunGaborMP. Its input parameters are:
a partition Part, an input signal f, a maximal number of iterations max_iter and a
precision €. Its output parameters are: a vector of real Gabor functions G, a vector
of scalars Gcoef corresponding to elements of G, an output signal f,ppros and the
residual Rf. RunGaborMP will keep calling the core function getOptimalGabor and
after each such call, G is appended with one more Gabor function and Gcoef is
appended with the corresponding coefficient. On the output we will have

fapproac = Z Gcoef[i] * G[i]v Rf = f - fapproaca
i=0

where n denotes the number of iterrations performed. If e-precision is achived in
n < maz_iter steps, i.e., ||Rf]| < €, then the function returns early, otherwise
n = max_iter. An outline of the code is

fapproz =0
Rf=f
for 1 =0; ¢+ <mazx_ter; i+ +
getOptimalShiftGabor (Rf, Part) return G[i], Gcoef[i]
fapprom = fapproac + Gcoef[i] * G[l]
Rf = Rf — Geoef[i] * G[i]
error’ = error? + ||Rf||?
if error < epsilon, stop
end

It should be noted that the Gabor functions comprising G have their sam-
ples set after they come fresh from RunShiftGabor. So if users want to watch
how MP progresses from iterration to iterration, they can plot intermediate steps.
For example, using Interval arithmetics we can find j-th approximation of f as

_o Gli].Sample * Geoe f[i]. A simple analysis of the cost tell us that for N da-
ta points the above algorithm takes order of magnitude N2 calculations, when a
partition given by the constructor for the Partition class is used.

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 13

4.4 |Implementation B

We may also implement a fast version of the Matching Pursuit Algorithm on an in-
terval by taking advantage of the Fast Fourier Transform (FFT) implementation of
the Discrete Fourier Transform (DFT). This fast implementation takes N log®(N)
calculations. The price to be paid, however, is that we loose much of the flexibility
in choosing the dictionary.

The structure of this algorithm is the same as for the previous algorithm. There
is a wrapper function, RunFFTGaborMP, which makes repeated calls to the function,
getOptimalFFTGabor. This latter function finds, at any given iteration, that ele-
ment of the Gabor dictionary defined for this implementation which best matches
the current residue. The dictionary we use is practically the same as in (2), but for
technical reasons is not identically the same.

The function RunFFTGaborMP has the same parameter list as RunShiftGaborMP,
save for the partition variable which is unnecessary in the former function. Other-
wise RunFFTGaborMP behaves exaxtly the same as its counterpart explained above.
The novelty of implementation B is in the way that the optimal Gabor function is
found. We may save vastly on the number of arithmetic operations used by using
the FFT algorithm; to do so we must set things up in the proper way. This fixes
the partition that we use.

In order to be take advantage of the FFT algorithm we must first have that IV
is a power of 2, N = 27 for some J. Then the only allowable values for the scale
parameter s are s = 2/, j = 1,2,...,J. For a given value of s the allowable values of
the frequency parameter, v are v = 2rk/M, where M = 8s when 8 < N, M = N
otherwise, and k = 0,1,... M — 1. The values of the translation parameter, v may
be chosen as desired; the fast implementation uses the same convention as the more
general implementation: u = ps/2, where 0 < p < 2N/s.

The algorithm begins by first choosing s = 2¢ and then selecting an allowable u.

Having done this define
) j —u 2mjk
Pk(]):g<] 5)COS (TJ>,

i) =g (15)sin (3F)).

This is just P,(t) and Q,(t) of equation (4.1) with t = j, v = (2%,u,27k/N). For
each value £k =0,1,...N — 1 we may use the FFT to calculate

(f, Pr), (f,Qr)s (P, Pr), (Qk,Pr), (Qr,Qu), (18)

for all values of k. These are precisely the quantities needed to find the parameters,
(9), of Proposition 1 and, ultimately, (f, g(s,u,0,u))-

The main idea is that the above quantities are just the real and imaginary parts
of the DFT of carefully chosen inputs. With a little finesse we may take advantage
in the gain in speed offered by the FFT algorithm. There are, however some
technicalities to be dispensed with before we may actually use the FFT.

Given the effective support of g(t/s), i.e., that g ~ 0 when |t/s| > 4, we must
distinguish two cases, Case I when 8 > N and Case II when 8s < N. We must
also take into account the shift parameter v and its relation to the right and left

14 . S. E. Ferrando, L. A. Kolasa and N. Kovatevié

hand end points of the interval. This leads to Case II having three subcases: (a)
0<u<d4s,(b)4s<u <N —4sand (c) u >N —4s.

Before considering the cases above we recall the formula for the DFT of M data
points {xj}j”ial. For k=0,1,..., M — 1 define X}, by

M-1 M—1 M—1
X = Z zjexp(—2mijk/M) = Z xjcos(2mjk/M) —i zjsin(2mjk/M).
Jj=0 7=0 j=0

Let us make the notation: Output.Re[k] = Re(X}), Output.Im[k] = Im(X}).
Case I is computationally the simplest. The assumption that 8 > N means
that the support of g is effectively the whole interval. If we take as our input
r; = f(j)g(+5*) and have M = N, then for £ =0,1,... M — 1,
(f, Py, = Output.Re[k],
(f, Pry, = —Output.Re[k].

By taking the input to the FFT to be z; = g(j_T“)2 and using the double angle
formulas for sines and cosines we have, with C' = Input.Re[0],

1
(Pr, Pr) = 3 (C + Output.Re[2k]) ,

(Qr, Qx) = %(c ~ Output.Re[2k]),

1
(Qk, Pi) = —5Output.Im[2k],

for k=0,1,...,5 -1, and

<Pk7Pk> = <PI<:—N7PI<:—%>7
(@, Qr) = (Qp_x
<Qk;Pk> = <Qk7%7Pkf%>7

when k=& Sy N =L

In Case IT 8s < N, and the effective support of the Gaussian g(t/s) is smaller
than the interval. We take advantage of the fewer number of data points and let
M = 8s in the FFT algorithm. The three subcases account for the center of the
Gaussian, which is the main technicality in this algorithm.

Subcase (a), 0 < u < 4s, is exactly as the previous case; we do everything as
before with N replaced by M = 8s. In this case the support of g(L) still contains
the left hand endpoint of the interval and so the FFT algorithm may be used exactly
as before.

In subcase (b), the lefthand endpoint of the interval is no longer in the support of
the Gaussian, and in order to use the DFT we must make a translation of indices;
let the input to the FFT be z; = f(j + u — 4s)g({=**). A modulation in the
frequency domain takes place; let a, = 2m(u — 4s)k/M. Then,

(f, Pr), = cos(ay)Output.Re[k] + sin(ay,) Output.Im[k],
(f, Pr), = sin(ax)Output.Re[k] — cos(ay,) Output.Im[k].

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 15

If we now let the input be z; = g(j_s4s)2, and take C as before, with k& =

0,1,...., % —1,

(Pr, P) = % (C' + cos(azr)Output.Re[2k] + sin(az) Output.Im[2k]) ,

(0, Q1) = % (C = cos(ass)Output.Re[2k] — sin(asy)Output.Im[2k]) |

(Qk, Pr) = % (— cos(aay,) Output.Im[2k] + sin(asy) Output.Re[2k]) .
And for k = %, ..., M —1 we use the above formulas with k replaced by k — % as
before.

Subcase (c) sees the support of the Gaussian going past the right hand endpoint
of the interval. To make up for this we only have to pad with zeros. For j =
0,1,...,N —1—u+4s we let z; be defined as before. Otherwise z; = 0.

The logic of the getOptimalFFTGabor is as follows. The input signal f, which
has N samples where N = 27 for some J > 0, is passed to getOptimalFFTGabor.
The scales, s, are traversed in decreasing order: we start with s = N and decrease
s by a factor of % in each successive iteration of the outermost loop. The first three
passes of the s loop involve Case I, while the others involve the three subcases of
Case II.

In any case, once s is fixed the next loop is indexed by the translation variable,
u. The increment du is set at § and the u variable is traversed paying special
attention to which case and subcase is to be considered. For a fixed value of u
the FFT algorithm is employed in the manner discussed above and the optimal
Gabor vector, g(s,u,v,w), and the corresponding coefficient are found. Once this
is accomplished the functon returns to RunFFTGaborMP, the rsidual is updated and
the process may repeat itself as desired.

Here is pseudocode for getOptimalFFTGabor.

s=N

coef=0

while s > &
du = 3

for u=0; u< N; ut+=du
for j=0; j<N; j++
set X; = f(j)9(*)

set X; = g(=%)?

end

FFT(X), FFT(X)

for k=0; k<N; k++
calculate the quantities in (18)
calculate a, b, a1, by according to (9)
calculate product = <f, g(s’u’v’w)>
if |product| > coef
set coef = product and G = G(s,u,v,w)

end

end

16 . S. E. Ferrando, L. A. Kolasa and N. Kovatevié

=3
end
while s> 1
du = 3
for u=0; u<4s; ut+=du
for j=0; j<8s; j++
set X;j=f(j+u- 4s)g(%)
set X; = g(&=2)2
end
FFT(X), FFT(X)
for k=0; k£ <8s; k++
calculate the quantities in (18)
calculate a, b, a1, b; according to (9)
calculate product = <f, g(s7u7v7w)>
if |product| > coef
set coef = product and G = G(s,u,v,w)
end
end
for u=4s; u <N —4s; u+ =du
for j=0; j<8s; j++
if j< N—1—-—u—4s
set X;=f(j+u- 43)9(%)
set X; = g(%)2
else
set Xj = Xj =0
fi
end
FFT(X), FFT(X)
for k=0; k£ <8s; k++
calculate the quantities in (18)
calculate a, b, a1, b; according to (9)
calculate product = <f, g(s7u7v7w)>
if |product| > coef
set coef = product and G = G(s,u,v,w)
end
end
=3
end

Given the N log(N) complexity of the FFT algorithm, the complexity of imple-
mentation B is seen to be N (log(/N))2. This compares favorably with the algorithm
of Mallat in [Mallat and Zhang 1993] where they claim that their algorithm is of
Nlog(N) complexity.

REFERENCES

CHEN, S. AND DoNOHO, D. 1995. Atomic decomposition by basis pursuit. In SPIE Inter-
national Conference on Wavelets (July 1995). SPIE.

A Flexible Implementation of Matching Pursuit for Finite Gabor Sequences . 17

CHEN, S., DONOHO, D., AND SAUNDERS, M. 1995. Atomic decomposition by basis pursuit.
Technical Report 479.

COIFMAN, R. AND WICKERHAUSER, V. 1992. Entropy-based algorithms for best basis selec-
tion. IEEE Transactions on Information Theory 38, 712-718.

DAuUBECHIES, I. 1990. The wavelet transform, time-frequency localization and signal analy-
sis. IEEFE Trans. on Info. Theory 36, 5 (September), 961-1005.

DAUBECHIES, I. 1992. Ten Lectures on Wavelets. STAM, Philadelphia, PA.

DAUBECHIES, 1., LANDAU, H., AND LANDAU, Z. 1995. Gabor time-frequency lattices and the
wexler-raz identity. The Journal of Fourirer Analysis and Applications 1, 4, 961-1005.
DEVORE, R. AND TEMLYAKOV, V. 1996. Some remarks on greedy algorithms. Advances in

Computational Mathematics 5, 173—-187.
Donono, D. AND Huo, X. Uncertainty principles and ideal atomic decompositions. Technical

Report.
FERRANDO, S., KoLASA, L., AND KOVACEVIC, N. 2000.
C++wavelets: A user’s guide. Included in distribution of Wave++,

http://www.scs.ryerson.ca/~1lkolasa/CppWavelets.html.

Jagar, S. 1998. High resolution pursuit for feature extraction. J. of Appl. and Comput.
Harmonic Analysis 5, 9, 428—439.

JANSSEN, A. E. J. M. 1998. The duality condition for weyl-heisenberg frames. In Gabor
Analysis and Algorithms (1998). Birkhauser.

MALLAT, S. 1998. A Wavelet Tour of Signal Processing. Academic Press, Boston, MA.

MALLAT, S. AND ZHANG, Z. 1993. Matching pursuit with time-frequency dictionaries. IEEE
Transactions on Signal Processing 41, 12, 3397-3415.

NEFF, R. AND ZAKHOR, A. 1997. Very low bit-rate video coding based on matching pursuit.
IEEE Trans. on Circuit Syst. for Video Tech. 7, 1 (February), 158-171.

PuiLips, P. J. 1998. Matching pursuit filters applied to face identification. IEEE Trans.
Image Proc. 7, 8 (August), 1150-1164.

QIAN, S. AND CHEN, D. 1996. Joint Time-Frequncy Analysis: Method and Application.
Prentice Hall, Englewood Cliffs, NJ.

TAasweLL, C. AND McGILL, K. C. 1994. Algorithm 735: Wavelet transform algorithms for
finite-duration discrete-time signals. ACM Transcations on Mathematical Software 20, 3
(September), 398—-412.

WEXLER, J. AND RAz, S. 1990. Discrete gabor expansions. Signal Processing 21, 207-220.

ZIBULSKI, M. AND ZEEVI, Y. 1994. Frame analysis of the discrete Gabor-scheme analysis.
IEEE Transactions on Signal Processing 42, 942-945.

ZIBULSKI, M. AND ZEEVI, Y. 1995. Multi-window gabor-type transform for signal represen-
tation and analysis. In SPIE Proc. Wawvelet Applications in Signal and Image Processing I
(July 1995), pp. 116-127.

